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Abstract

We present a high-order boundary integral equation solver for 3D elliptic boundary value problems on domains with
smooth boundaries. We use Nyström’s method for discretization, and combine it with special quadrature rules for the sin-
gular kernels that appear in the boundary integrals. The overall asymptotic complexity of our method is O(N3/2), where N

is the number of discretization points on the boundary of the domain, and corresponds to linear complexity in the number
of uniformly sampled evaluation points. A kernel-independent fast summation algorithm is used to accelerate the evalu-
ation of the discretized integral operators. We describe a high-order accurate method for evaluating the solution at arbi-
trary points inside the domain, including points close to the domain boundary. We demonstrate how our solver, combined
with a regular-grid spectral solver, can be applied to problems with distributed sources. We present numerical results for
the Stokes, Navier, and Poisson problems.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Potential theory has played a paramount role in both analysis and computation for boundary value prob-
lems for elliptic partial differential equations. Numerous applications can be found in fracture mechanics, fluid
mechanics, elastodynamics, electromagnetics, and acoustics. Results from potential theory allow us to repre-
sent boundary value problems in integral equation form. For problems with known Green’s functions, an inte-
gral equation formulation leads to powerful numerical approximation schemes. The advantages of such
schemes are well known: (1) there is no need for volume mesh generation; (2) in many cases they result in oper-
ators with bounded condition number; (3) for exterior problems, they satisfy far-field boundary conditions
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exactly; and (4) they typically exhibit high convergence rates when the domain boundary and boundary con-
dition are sufficiently smooth.

Despite their advantages, numerical approximations to integral equations are plagued by several mathe-
matical and implementational difficulties, especially if the goal is to obtain an algorithm that is asymptotically
optimal, accurate, and fast enough to be useful in practical settings. Indeed, in order to get such an algorithm,
for domains with smooth boundaries,1 one has to address five main problems:

� Fast summation. The discretized operators are dense and the corresponding linear systems are prohibitively
expensive to solve. Direct solvers are not applicable; iterative methods like GMRES can help, but still result
in suboptimal complexity.
� Fast and accurate quadratures. One needs to use suitable quadrature rules to discretize the integral opera-

tors; the kernels are often singular or hypersingular, and the choice of the quadrature rule is important to
obtain high-order convergence. This is a difficult problem that is made worst by the need to guarantee opti-
mal complexity.
� Domain boundary representation. High-accuracy rules often require smooth approximations to the domain

boundary. In two dimensions this is a relatively easy problem, but it is more complicated in the case of three
dimensions.
� Solution evaluation. The solution is typically evaluated on a dense grid of points inside the domain. Such

grids can include points arbitrarily close to the boundary, in which case nearly-singular integrals need to
be evaluated. Again, the goal is to guarantee high accuracy at optimal complexity.
� Volume potentials. For problems with possibly highly non-uniform distributed forces, one has to devise

efficient schemes for the computation of volume integrals, especially in the case where the support of the
function coincides with a volumed domain that has a complex boundary.

In this paper, we present a method that addresses each in turn, save the last.
For two-dimensional boundary value problems in smooth domains, a number of highly efficient boundary

integral solvers has been developed [5,21,23,33]. Most implementations are based on indirect formulations that
result in integral equations with double layer potentials. In 2D, these kernels are often non-singular and the
domain boundary can be easily parameterized; the boundary integrals can then be evaluated using standard
quadrature rules, and superalgebraic convergence rates can be obtained. Such discretization combined with
fast summation methods result in optimal algorithms. In three dimensions, however, the situation is radically
different (we review the related work in the following section).

We present a 3D boundary integral solver for elliptic PDEs, for domains with smooth (C1 or Ck-contin-
uous for sufficiently large k, but not necessarily analytic) boundaries, which achieves high-order convergence
with linear complexity with respect to the number of evaluation points. The distinctive features of our solver
are: (1) fast kernel-independent summation; (2) arbitrary smooth boundaries and high-order convergence; (3)
distributed forces that are uniformly defined in a box that encloses the target domain; and (4) high-accurate
direct evaluation of the solution in a non-uniform distribution of points.

The operators are sparsified by our kernel-independent fast multipole method (FMM) [49], which makes it
possible to accelerate the solution of the dense linear system for many elliptic PDEs of which the kernels have
explicit expressions. We use Nyström’s method to discretize the boundary integral equations. There are two
reasons to prefer Nyström’s method to Galerkin or collocation approaches: simpler implementation for super-
algebraic convergence and, based on existing literature, lower constants [12].

Although the kernels of various PDEs are different, the behavior of their singularities are similar. We
address the second problem (quadrature construction) by extending the local quadrature methods of [11] to
integrate the singularities of various types. A key component of the solver is the ability to have high-order
representations for arbitrary geometries with (relatively) minimal algorithmic and implementational complex-
ity. Such a representation is described in detail in [51]. To compute the near-singular integrals for points close
to the boundary, we adopt a high-order scheme to interpolate the solution from the values at points suffi-
1 Domains with edges and corners present additional challenges that we do not discuss in this particle.
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ciently separated from the boundary. Finally, we show how our boundary equation solver can be combined
with an FFT-based fast spectral solver on regular grids to obtain solutions of inhomogeneous boundary value
problems on domains with smooth boundaries.

If N quadrature points are used to discretize the boundary, our solver requires O(N1+d) operations to solve
the boundary integral equation, where d > 0 is a constant that can be chosen to control the complexity and
accuracy of the algorithm. For a Dirichlet problem in which the boundary data is in CM and the boundary
is in C1, the error of the solution is O(hMd�(1�d)), where h ¼ Oð 1ffiffiffi

N
p Þ is the spacing of the Nyström discretiza-

tion. Notice that if both Dirichlet data and the boundary are in C1, then d can be chosen to be arbitrarily
close to zero. To simplify the presentation, we describe our solver for d = 1/2 in Section 3.

We observe that the complexity of solving the boundary integral equation with d = 1/2 matches the com-
plexity of evaluating the solution on uniformly sampled volume. Suppose the solution in the interior of the
domain is sampled with the same density used for the boundary (i.e., with O(N3/2) points) the evaluation
of the solution on these domain samples takes O(N3/2) operations; in other words, we spend, on average, a
constant number of operations for the evaluation of the solution on each interior point.

1.1. Related work

Much work has been done on using the boundary integral formulation for elliptic problems in two dimen-
sions. We refer the reader to [5,33,28] for excellent reviews. Here, we primarily focus on work on three-dimen-
sional problems for integral equations of the second kind.

In contrast to the two-dimensional case, almost all boundary integral methods for three-dimensional prob-
lems are based on Galerkin or collocation discretizations, with few exceptions, among which [11] is closest to
our work. This paper describes an FFT-based method to compute the smooth part of the boundary integral
efficiently; a local quadrature rule based on FFT interpolation evaluates the singular part accurately. One
disadvantage of the method (not particularly important for the scattering applications for which it was
developed), is that it is not efficient for highly non-uniform domains (e.g. multiply-connected domains), which
make the use of a uniform FFT rather inefficient.

Several types of Galerkin and collocation approaches were explored. Conventional piecewise constant and
linear finite element basis functions are often used (e.g. in [5,10,13]), but result in low-order convergence.

Higher-order convergence can be obtained with more complex basis functions. Such basis functions, how-
ever, are difficult to construct, especially for arbitrary surfaces, and the expense of evaluation of the double
integrals for matrix elements is high. The hybrid Galerkin method [19] aims to reduce the cost of evaluation
of the stiffness matrix. Another common approach is to use a spectral Galerkin discretization, e.g. [4,18,20].
While excellent convergence rates can be obtained using this method, constructions of spectral basis functions
are limited so far to spherical and toroidal topologies.

Wavelet-based approaches for solving integral equations start with [8]. These approaches have many
advantages, such as efficient dense matrix–vector multiplication and preconditioning. An approach using
high-order multiwavelets (a wavelet-type basis that is discontinuous but preserves the vanishing moments
property) is explored in [1]. In [15,14,34], wavelet bases are constructed on the boundary surfaces directly.
As is the case for most Galerkin methods, constructions of high-order basis functions are complex. Conse-
quently, high-order convergence rates for smooth solutions are difficult to obtain. Another wavelet-based
approach, based on low-order wavelet bases constructed on a three-dimensional domain containing the
boundary, was explored in [44–46]. The important feature of this approach is its ability to handle highly com-
plex and irregular piecewise-smooth geometry.

Finally, p and hp versions of the Galerkin methods [25,26] were used to obtain high convergence rates for
simple open surfaces with corners.

An essential ingredient of Galerkin techniques is an integration method for computing matrix coefficients.
A variety of semi-analytical and numerical quadratures for evaluating the integrals for singular and hypersin-
gular kernels was developed, e.g. [2,43,16,3]; [29] surveys many of the early algorithms. These algorithms focus
on the scenario typical for Galerkin methods where the function to be integrated is known, and are often
tailored for specific basis functions. Therefore, most of the quadrature algorithms are not suitable for
Nyström-based formulations that typically do not involve the definition of a basis.
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A number of techniques were used to accelerate inversion of the dense linear system resulting from discret-
ization. These techniques include fast multipole method (FMM) [22], panel clustering method [24], FFT-based
approaches [11,38] and, as already mentioned, wavelet-based techniques. FMM runs in linear complexity for
any fixed accuracy. A comprehensive survey of algorithms using FMM can be found in [39]. As an important
extension of the standard tree code, Panel clustering method has complexity O(N logd+2 N) with d and N being
the dimension and the size of the problem, respectively. For relatively uniform distribution of geometry in
space, FFT-based methods are often more efficient.

Nearly singular integration has received relatively little attention; relevant work includes [47,30,7]. Vija-
yakumar and Cormack [47] used homogeneity of the kernel to convert the problem to an ODE. Johnson
[30] applied a change of coordinates to reduce or move the singularity in the parametric domain. Beale and
Lai [7] considered the problem in two-dimensions, replacing the kernel with a regularized version, and using
correction terms based on asymptotic analysis to reduce errors. A different technique in which the nearly
singular evaluation is avoided is presented in [9,35], in which a jump from the boundary integral equation
are combined used to derive discretized monopole and dipole distributions for a regular grid PDE solver.
The disadvantages of those methods are that they require regular sampling grids, and their accuracy is limited
by the accuracy of the regular grid solver.

Techniques based on integral equation formulations have been widely used in engineering literature to
study phenomena related to flows with low Reynolds numbers. For example, Pozrikidis and collaborators
[42] describe a number of applications related to flows of suspensions of liquid capsules. Zinchenko and Davis
[52] developed an efficient algorithm for computing hydrodynamical interaction of deformable droplets with
reasonable accuracy. Muldowney and Higdon [37] introduced a spectral element approach for 3D Stokes flow,
which was applied to compute the resistance functions for particles in cylindrical domains [27]. However, most
numerical examples there were limited to simple geometries.
1.2. Boundary value problems

We consider three elliptic equations: the Laplace equation, the Stokes equation, and the Navier equation.
The Laplace equation on an open set X with boundary C is:
�Du ¼ 0 in X;

u ¼ b on C;

�

where u is the potential field.
The Stokes equations are:
�lDuþrp ¼ 0 in X;

divu ¼ 0 in X;

u ¼ b on C;

8><
>:
where u is the velocity, p is the pressure, l is a positive constant and the equation divu = 0 is often called the
incompressibility condition.

Finally, the Navier equation is:
�lDu� l
1�2mrdivu ¼ 0 in X;

u ¼ b on C;

�

where u is the displacement field, l is a positive constant and m 2 ð0; 1
2
Þ.

We also consider the inhomogeneous form of the above equations, for which we have a distributed force
term on the right-hand side.

1.3. Geometric representation of the boundary

To achieve high-order convergence, we need a high-order geometric representation for the boundary. We
assume an explicit manifold structure of the boundary, i.e., that the boundary C is the union of overlapping



Fig. 1. Left: Parameterization of the boundary. The middle and right frames illustrate an example surface. Middle: Multiple patches
shown separately. Right: The surface is the union of all the patches.
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patches Pk where k 2 K. Every Pk is parameterized over an open set U k � R2 by a function gk : U k ! R3 and
gk(Uk) = Pk (see Fig. 1). We assume gk and the manifold structure to be C1; this assumption can be relaxed to
Ck for a sufficiently large k (how large k should be depends the desired convergence rate). It is important to
note that the surface in this case is not defined as a collection of separate and disjoint parameterizations.

Most of the analytic surfaces, such as spheres, torus, and ellipsoids, have simple manifold representations.
In [51], we describe a framework to construct general smooth surfaces with explicit manifold representations
from arbitrary coarse meshes, along with implementation details. Reparametrization techniques (e.g. [31]) can
be used to construct a manifold-type representation from an arbitrary fine triangle mesh.

1.4. Organization of the paper

In Section 2, we start with a review of the boundary integral formulation of the related elliptic PDE prob-
lems and describe briefly the Nyström’s method used for numerical solution. We focus on the Stokes operator.
Although it is more complicated than the scalar Laplace operator, it is more general and the derivation of the
integral formulations is pertinent to the other kernels. Section 3 describes the discretization and quadrature
rule for the singular integrals in the boundary integral formulation. Section 4 presents a new algorithm for
integrating nearly singular integrals that appear in the evaluation of the solution at points that are close to
the boundary. Section 5 shows how to extend our solver to handle inhomogeneous problems with non-zero
body force. Finally, numerical results are presented in Section 6.

For the remainder of the paper, we describe our method in the case of the Stokes equations, and with
respect to the remaining two equations, we discuss the necessary modifications to our method. We limit
our discussion to the problems with the Dirichlet boundary conditions.

2. Boundary integral formulation

We use a standard boundary integral formulation of the Stokes equations [36,32,40]. The Stokes equations:
�lDuþrp ¼ 0 in X;

divu ¼ 0 in X;

u ¼ b on C

8><
>: ð1Þ
are converted to a boundary integral equation using the double layer potential for the velocity field:
Z
C

Dðx; yÞ/ðyÞdsðyÞ ¼
Z

C
� 3

4p
ðr� rÞðr � nðyÞÞ

jrj5

 !
/ðyÞdsðyÞ ðx 2 XÞ; ð2Þ
where r = x � y, n(y) is the exterior normal direction at y, |r| is the Euclidean norm of r; D is weakly-singular
and called the double layer kernel for the velocity field, and the function /, defined on C, is called the double
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layer density. We often write (2) as (D/)(x). If we momentarily ignore the incompressibility condition (i.e.,
divu = 0) and assume the domain X to be simply-connected and bounded, we can obtain the solution of
(1) by solving for the density / from
1

2
/ðxÞ þ ðD/ÞðxÞ ¼ bðxÞ ðx 2 CÞ ð3Þ
and evaluating the velocity u and pressure p at arbitrary points x 2 X using
uðxÞ ¼
Z

C
Dðx; yÞ/ðyÞdsðyÞ and pðxÞ ¼

Z
C

Kðx; yÞ/ðyÞdsðyÞ; ð4Þ
where Kðx; yÞ ¼ l
2p ð

nðyÞ
jrj3 � 3 ðr�rÞnðyÞ

jrj5 Þ is the double layer kernel for the pressure field. Then, u and p for x on the
boundary C are given by
uðxÞ ¼ 1

2
½½u��ðxÞ þ

Z
C

Dðx; yÞ/ðyÞdsðyÞ and pðxÞ ¼ 1

2
½½p��ðxÞ þ

Z
C

Kðx; yÞ/ðyÞdsðyÞ; ð5Þ
where [[u]](x) = /(x) is the difference between the limit values of the velocity fields inside and outside the
domain at x 2 C, and [[p]](x) is the difference of the pressure field (see Appendix B for the exact formula).
The integral for pressure in (5) is understood in the Hadamard sense (see p. 264 of [23]).

To account for incompressibility of the fluid and domain geometry, we need to modify these basic steps. We
consider three different types of domains, shown in Fig. 2.

2.1. Single-surface bounded domains

In this case, we need to include the incompressibility condition. Following [32,40], we obtain / by solving a
modified version of (3)
1

2
/ðxÞ þ ðD/ÞðxÞ þ ðN/ÞðxÞ ¼ bðxÞ ðx 2 CÞ; ð6Þ
where ðN/ÞðxÞ ¼ nðxÞ
R

C nðyÞ/ðyÞdsðyÞ, and then evaluate u and p by (4).

2.2. Unbounded domains

Suppose C ¼
SM

m¼1Cm where Cm are different connected components of the boundary. In this case, the oper-
ator 1

2
þ D has a null space of size 6M, corresponding to rigid-body transformations. As a result, the double

layer density / is not sufficient to represent arbitrary velocity field in X. Following [21,32,40], the solution is to
introduce additional Stokeslet and Rotlet terms for each Cm for 1 6 m 6M. The Stokeslet is the Green’s func-
tion of the Stokes equations:
n

n

n1

M

2

n

n

n

n

0

1

M

2

n

(a) (b) (c)

Fig. 2. Domain types: (a) single-surface bounded domain; (b) unbounded domain; (c) multiple-surface bounded domain.



L. Ying et al. / Journal of Computational Physics 219 (2006) 247–275 253
SðrÞ ¼ 1

8pl
1

jrj I þ
r� r

jrj3

 !
:

The Rotlet is defined by
RðrÞg ¼ 1

8pl
g � r

jrj3
for any g. Both are centered at the interior points zm of the volumes enclosed by the boundary components.
We first solve for /, am and bm using:
1
2
/ðxÞ þ ðD/ÞðxÞ þ

PM
m¼1

Sðx� zmÞam þ Rðx� zmÞbmð Þ ¼ bðxÞ ðx 2 CÞ;R
Cm

/ðyÞdsðyÞ ¼ 0 ð1 6 m 6 MÞ;R
Cm
ðy� zmÞ � /ðyÞdsðyÞ ¼ 0 ð1 6 m 6 MÞ:

8>>><
>>>:

ð7Þ
Then, the velocity and pressure are computed by:
uðxÞ ¼ ðD/ÞðxÞ þ
PM
m¼1

ðSðx� zmÞam þ Rðx� zmÞbmÞ;

pðxÞ ¼ ðK/ÞðxÞ þ
PM
m¼1

Hðx� zmÞam;

8>>><
>>>:

ð8Þ
where H is the pressure field associated with the Stokeslet and defined by
HðrÞg ¼ 1

4p
r � g
jrj3
for any g. Here the pressure does not depend on bm since any Rotlet generates zero pressure.

2.3. Multiple-surface bounded domains

Suppose the boundary C consists of M + 1 connected components Cm, m = 0, . . . ,M, and C0 encloses all
other components Cm for m = 1, . . . ,M. We first solve for /, am and bm using:
1
2
/ðxÞ þ ðD/ÞðxÞ þ ðN/ÞðxÞ þ

PM
m¼1

ðSðx� zmÞam þ Rðx� zmÞbmÞ ¼ bðxÞ ðx 2 CÞ;R
Cm

/ðyÞdsðyÞ ¼ 0 ð1 6 m 6 MÞ;R
Cm
ðy� zmÞ � /ðyÞdsðyÞ ¼ 0 ð1 6 m 6 MÞ:

8>>><
>>>:

ð9Þ
Then, we evaluate the velocity and pressure using (8).

Remark 2.1. The integral equations for the Navier equations are very similar to those of the Stokes equations.
The only difference is that N/ is removed from the equations of the single-surface and multiple-surface
bounded domains since there is no incompressibility condition.

The integral equations of the Laplace equation are simpler. For single-surface bounded domains (3) works
without modification. For both the unbounded and multiple-surface bounded cases, the equations are:
1
2
/ðxÞ þ ðD/ÞðxÞ þ

PM
m¼1

Sðx� zmÞam ¼ bðxÞ ðx 2 CÞ;R
Cm

/ðyÞdsðyÞ ¼ 0 ð1 6 m 6 MÞ;

8><
>:
where S is the Green’s function of the Laplace equation and / and am are the unknowns.
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Returning to the Stokes equations, we discretize (6), (7) or (9) using the Nyström method, and the resulting
system is solved by means of a GMRES solver and a preconditioner described in [21]. The essential step in the
GMRES solver is the evaluation of
ðD/ÞðxÞ ¼
Z

C
Dðx; yÞ/ðyÞdsðyÞ ðx 2 CÞ: ð10Þ
This integral needs to be computed both efficiently (as it is evaluated at each iteration of the GMRES solver)
and also accurately (as its accuracy determines the overall accuracy of the method).
3. Numerical quadrature

As noted in Section 1.3, the domain boundary C is the union of a set of overlapping patches Pk, k = 1, . . . ,K,
smoothly parameterized over a chart Uk by smooth functions gk (hereinafter, we use ‘‘smooth’’ to describe C1

or Ck functions for k sufficiently large not to affect the convergence estimates). Additionally, we utilize a par-
tition of unity {wk: C! R} satisfying the following conditions:

� Each wk is smooth and non-negative in Pk, and vanishes on the boundary of Pk.
�
PK

k¼1wkðxÞ ¼ 1 for all x 2 C.

As we will see in this section, the overlapping patches and the partition of unity allows us to use the trap-
ezoidal rule to compute the smooth part of (10) with high-order accuracy. For surfaces constructed by the
method in [51], the partition of unity used for surface construction naturally satisfies the conditions above
(see [51] for details). For general surfaces represented as overlapping patches, it is often not difficult to con-
struct {fk} that satisfy the first condition. Then, we can simply choose fwk ¼ fk=ð

PK
k¼1fkÞg as the partition of

unity.

3.1. Discretization and quadrature rules

As we integrate singular kernels, we need to use high-accuracy quadrature rules for singular functions.
Though adaptive methods with variable number of quadrature points combined with product integration rules
can be used in the context of the Nyström method, these techniques are difficult to combine with fast summa-
tion schemes. In the alternative, one can choose regular quadrature point placements, and take advantage of
domain transformations to adapt quadrature points to the singularity. Our approach is based on the develop-
ment in [11] for the Helmholtz equation.

We first restrict the integral (D/)(x) to the domain Uk:
ðD/ÞðxÞ ¼
XK

k¼1

Z
Uk

Dðx; gkðckÞÞwkðgkðckÞÞ/ðgkðckÞÞJ kðckÞdck;
where Jk denotes the determinant of the Jacobian matrix of the parametrization gk. Define
wkðckÞ ¼ wkðgkðckÞÞ/ðgkðckÞÞJ kðckÞ:

Since wk vanishes at the boundary of Pk, both wk(gk(Æ)) and wk(Æ) vanish at the boundary of Uk. Using this
notation, the integral becomes
ðD/ÞðxÞ ¼
XK

k¼1

Z
Uk

Dðx; gkðckÞÞwkðckÞdck: ð11Þ
We use a subset of a regularly spaced grid of quadrature points {(ah,bh), a; b 2 Z for each domain Uk}. The
set of grid points inside Uk is denoted by {ck,i}. We use the union of grid points in all charts

SK
k¼1fck;ig as the

Nyström points in the approximation of D/(x).
In subsequent formulas, we use /k,i to denote the value of function / at point ck,i. Similarly, wk,i is the value

of wk at ck,i and xk,i is the position gk(ck,i).
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We consider, one by one, the integrals in (11) over a single domain Uk. To simplify the notation, we drop
the index k in the rest of this section, i.e., we compute integrals of the form
Z

U
Dðx; gðcÞÞwðcÞdc: ð12Þ
3.1.1. Non-singular integration

If x 62 g(U), then D(x,g(c)) is non-singular for any point c 2 U, and the integrand D(x,g(c))w(c) and its
derivatives vanish at the boundary of U. Such a function can be extended to a smooth periodic function
on the plane by extending it by zero to a rectangular domain containing U. For infinitely differentiable
periodic functions, the trapezoidal rule with weights h2 at points ci has super-algebraic rate of convergence
for integrals over periodic domains. For CM functions, the trapezoidal rule converges as O(hM).

3.1.2. Singular integration

If x = g(c 0) for some c 0 2 U, we introduce a C1 function gc0 defined by
gc0 ðcÞ ¼ v
jc� c0jffiffiffi

h
p

� �
;

where v: [0,1)! [0,1] is a non-increasing C1 function satisfying v(r) = 1 in a neighborhood of zero and
v(r) = 0 for r P 1. In practice, we choose v such that v(r) = 1 for r 6 1/4. The function gc0 is radially-symmet-
ric and supported in a disk of radius

ffiffiffi
h
p

centered at c 0. Following [11], we call gc0 a floating partition of unity

function since its support depends on the position of x. Using the function gc0 , we split the integral (12) into
two parts:
Z

U
Dðgðc0Þ; gðcÞÞwðcÞdc ¼

Z
U

Dðgðc0Þ; gðcÞÞð1� gc0 ðcÞÞwðcÞdc ð13Þ

þ
Z

U
Dðgðc0Þ; gðcÞÞgc0 ðcÞwðcÞdc: ð14Þ
The integrand of (13) is smooth because ð1� gc0 ðcÞÞ vanishes in the neighborhood of c 0, and can be integrated
using the trapezoidal rule. To integrate (14), we use a polar coordinate system centered at c 0. Let
q = c � c 0 = (qcos(h),q sin(h)). Changing the variables in the second integral, we obtain
Z p

0

dh
Z ffiffi

h
p

�
ffiffi
h
p qDðgðc0Þ; gðcðq; hÞÞÞv jqjffiffiffi

h
p
� �

wðcðq; hÞÞdq: ð15Þ
In this formula, we allow q to be negative by restricting the integration domain of h to be [0,p). It can be
shown (see Appendix A) that for a fixed h, qD(g(c 0), g(c(q,h))) is a smooth function of q. Since v(Æ) vanishes
at 1, the integrand of the inner integral can be extended to a 1D smooth periodic function. Moreover, since the
inner integral depends smoothly and periodically on h, the double integral (15) can be integrated using the
trapezoidal rule again. The coordinates of the quadrature points in the polar coordinate system (q,h) are
a� 1

2

� �
h; 2pb

2pffiffiffi
h
p
� ��� �

2 ½�
ffiffiffi
h
p

;
ffiffiffi
h
p
Þ � ½0; pÞ;
where a and b range over all integers for which the points are in the integration domain (Fig. 3). The number
of quadrature points is of order Oð1hÞ.

The proof of the high-order accuracy of this quadrature rule is given in Theorem A.3 of Appendix A.
Assuming the boundary surface and the boundary conditions are both infinitely differentiable, the quadrature
rule is of order O(hM) for any integer M.

3.1.3. Density interpolation

The quadrature points for (14) are on a Cartesian grid in polar coordinates that do not coincide with the
points at which the unknown function is discretized. Therefore, an interpolation procedure is necessary to



ρ

θ

c      (ρ,θ)

o

c'

π

Fig. 3. Integration points in Cartesian (left) and polar (right) coordinates.
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obtain the values of w at the polar-coordinate quadrature points from its values at the Cartesian quadrature
points. The method we use, closely related to the technique used in [11], has two steps: the preprocessing step
and the evaluation step.

In the preprocessing step, we compute an additional set of values of w on the chart U. Since w can be
extended to a smooth periodic function on the plane with the periodic domain being a rectangle containing
regularly spaced quadrature points ci, we use 2D fast Fourier transform (FFT) to calculate the Fourier
coefficients of the periodic extension of w from the values wi at ci. We then use these Fourier coefficients to
approximate the values of w on a new grid, which is m times finer than the original grid, by means of an inverse
FFT. Finally, a bicubic B-spline interpolant is constructed from the values of w on this refined grid with
periodic end conditions.

Given a point c 2 U, we need to compute the values of w at a polar-coordinate grid centered at c. This is
done by simply evaluating the B-spline interpolant constructed in the preprocessing step.

This interpolation procedure is quite efficient due to local support of w, which allows us to extend w peri-
odically and to use FFT in the preprocessing step. By choosing the resolution of the fine grid sufficiently high,
we can obtain arbitrarily small relative error bound �interp for the interpolation process. In practice, for m = 8
we obtain �interp = 10�8.

Our quadrature rules have two important novel aspects: (1) the choice of the size of the support of the float-
ing partition of unity function g is of size

ffiffiffi
h
p

, which enables us to prove error bounds and complexity results
for the numerical integration; (2) the integration grid for the singularity is fully symmetric in the polar coor-
dinates (see Fig. 3), which makes it possible to compute hypersingular integrals such as the one in the evalu-
ation of the pressure of the Stokes equations (see Appendix A).

3.2. Efficient implementation and complexity analysis

Integral evaluation with the quadrature rules of Section 3.1 can be implemented efficiently and without
compromising accuracy, by using the kernel-independent fast multipole method.

For each point x on the boundary C, we need to evaluate the integral
ðD/ÞðxÞ ¼
XK

k¼1

Z
Uk

Dðx; gkðckÞÞwkðckÞdck;
which is decomposed into a sum of three parts:
X
k:x 62gkðUkÞ

Z
Uk

Dðx; gkðckÞÞwkðckÞdck; ð16Þ

X
k:x2gkðUkÞ

Z
Uk

Dðx; gkðckÞÞð1� gc0k
ðckÞÞwkðckÞdck; ð17Þ

X
k:x2gkðUkÞ

Z
Uk

Dðx; gkðckÞÞgc0k
ðckÞwkðckÞdck; ð18Þ
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where c0k ¼ g�1
k ðxÞ is a point in the chart Uk. The integral (18) is evaluated using the trapezoidal rule in local

polar coordinates centered at c0k. The integrals (16) and (17) are non-singular and are evaluated by means of
the standard trapezoidal rule applied to ck,i. The discretization of these two integrals is given by
X

all k

X
i

Dðx; gkðck;iÞÞwk;ih
2 �

X
k:x2gkðUkÞ

X
i

Dðx; gkðck;iÞÞgc0k
ðck;iÞwk;ih

2; ð19Þ
where wk,i = wk(ck,i). In the first summation extending over the whole boundary surface, the terms wk,ih
2 are

independent of the evaluation point x. Therefore, we can use the kernel-independent fast multipole method
developed in [49] to evaluate the value for all quadrature points x efficiently without compromising accuracy.
The second summation only involves the points ck,i, for which gc0k

is positive. As the support of gc0k
has radiusffiffiffi

h
p

, the absolute number of such points grows as the discretization is refined, but the fraction of these points is
O(h) and thus approaches zero. Algorithm 1 is the pseudo-code for evaluation of all dl,j = (D/)(xl,j), where indi-
ces k and l range over all charts, and indices i and j over all Cartesian grid quadrature points within each chart.

Algorithm 1 (Singular integral evaluation for velocity (Stokes equation)).

for all (k, i) do

wk,i wk,i/k,iJk(ck,i)
end for

{Step 1: Add terms of (19) with evaluation point independent weights.}
Set all dl,j to approximation of

P
k;iDðxl;j;xk;iÞwk;ih

2 using kernel-independent FMM.
{Step 2: Subtract terms of (19) with evaluation point dependent weights.}
for all (l, j) do

for each Uk such that xl;j ¼ gkðc0kÞ for some c0k 2 Uk do

d l;j  d l;j �
P

i:wk;i>0Dðxl;j; gkðck;iÞÞgc0k
ðck;iÞwk;ih

2

end for

end for

{Step 3: Preprocess the grids wk,i for high-order interpolation.}
{Step 4: Add (18).}
for all (l, j) do

for all Uk such that xl;j ¼ gkðc0kÞ for some c0k 2 U k do

Add to dl,j the discretization of
R

Uk
Dðxl;j; gkðckÞÞgc0k

ðckÞwkðckÞdck using polar coordinates integration.
end for

end for
3.2.1. Complexity analysis

Let N be the total number of quadrature points xk,i. This number can be approximated by K/h2 = O(1/h2),
where K is the total number of patches covering the boundary surface C, which does not depend on h. The
total computational cost is the sum of the costs of four stages of the algorithm.

1. The kernel-independent FMM algorithm used at Step 1 has complexity O(N) for a prescribed error �FMM.
2. In the double for loop of Step 2, since the support of the floating partition of unity is a disk of radius

ffiffiffi
h
p

,
the number of quadrature points xk,i at which the evaluation is required is Oð

ffiffiffiffi
N
p
Þ. Therefore, the overall

complexity O(N3/2).
3. The preprocessing of Step 3 has complexity of the fast Fourier transform, O(N logN).
4. The double for loop of Step 4, is also O(N3/2), since the number of polar-coordinate quadrature points is of

order Oð1hÞ ¼ Oð
ffiffiffiffi
N
p
Þ.

Summing up the costs of all four stages, we observe that complexity of our quadrature algorithm is O(N3/2).
This complexity is mostly determined by the radius of the floating partition of unity. The error analysis is car-
ried out in Appendix A and shows that the error is OðhM�1

2 Þ if the double layer density / is CM. If, instead of
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using the radius proportional to
ffiffiffi
h
p

, we use the radius h1�c for 0 < c 6 1, we obtain an algorithm with com-
plexity N1+c. For example, by using a partition of unity that shrinks faster (e.g. as h3/4), we can speed up the
algorithm at the cost of letting the error decrease more slowly with h (i.e., lowering the approximation order).
On the contrary, by using a partition of unity that shrinks slower (e.g. h1/4), we can increase the approximation
order, but the complexity of each evaluation step increases.

The algorithm described above implements a linear operator mapping the vector of /k,i to the vector of dl,j.
Hereinafter YD denotes this linear operator. To summarize,

� Evaluation of YD has complexity O(N3/2).
� The approximation error (YD/ � D/)(x), when / is a CM function, is bounded by

maxðC1h
M�1

2 ;C2�FMM;C2�interpÞ for x on C, where the constant C1 depends on the Mth order derivatives
of / and C2 is a bound on the L1 norm of D/. As previously mentioned, �FMM is the error bound of
the kernel-independent FMM and �interp the error bound of the interpolation step.

Remark 3.1. For the Laplace equation, the algorithm described in this section can be used without
modifications since the kernel has the same singularity behavior as that of the Stokes equations. For the
Navier equation, the double layer kernel has stronger singularity and the whole integral is understood in the
Cauchy sense. Nevertheless, based on an argument similar to Theorem A.6 of Appendix A, the trapezoidal
rule can still be applied, without necessitating any change in the algorithm.
3.3. Hypersingular pressure evaluation

In this section, we describe the algorithm used to evaluate the pressure value p on the boundary C from the
solution / using (5). This is an essential step in our algorithm for the evaluation of u and p in the interior of the
domain X (see Section 4).

Let / be the double layer density on C. For x 2 X, the double layer representation for pressure p(x) is
pðxÞ ¼ ðK/ÞðxÞ ¼
Z

C

l
2p

nðyÞ
jrj3
� 3
ðr� rÞnðyÞ
jrj5

 !
� /ðyÞdsðyÞ;
where r = x � y and n(y) is the exterior normal direction. We use K to denote both the kernel and the integral
operator. The kernel of K is fundamentally different from other kernels that we consider, as the singularity of
the kernel is of order |r|�3 (i.e., the integral is hypersingular). Evaluating these integrals requires modification
to our algorithm.

In order to derive the formula for p(x) for x on the boundary C, we use the following fact (from potential
theory for the Stokes operator): if / ” c is a constant, then the velocity field u in X generated by / is again a
constant, and correspondingly, the pressure field p is zero [33,40,41]. Assume x 0 2 X approaches a boundary
point x 2 C, in which case we can write the formula for the pressure in the following form:
pðx0Þ ¼
Z

C
Kðx0; yÞ � ð/ðyÞ � /ðxÞÞdsðyÞ:
If x 0 were on the boundary C, these integrals would be interpreted in the Cauchy sense. We know that for this
type of integrals, the interior limit p(x) of p(x 0) has the following integral form:
pðxÞ ¼ 1

2
½½p��ðxÞ þ

Z
C

Kðx; yÞ � ð/ðyÞ � /ðxÞÞdsðyÞ; ð20Þ
where [[p]] is the difference between the interior limit and the exterior limit of p at x.
The jump [[p]](x) can be expressed in terms of the double layer density /. We choose a local orthonormal

frame a,b in the tangent plane at x. In Appendix B, we show that the jump for p is given by
½½p�� ¼ �2lðat/a þ bt/bÞ;
where /a and /b denote the directional derivatives of / in the directions a and b, respectively.
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3.3.1. Jump evaluation

To evaluate the jump [[p]](x), we need to compute /a for a direction of a in the tangent plane at x from the
values of / at the quadrature points xk,i. The most straightforward approach would be to use the differential of
the chart parametrization to map directions a and b to the parametric domain, evaluate the directional deriv-
atives at quadrature points, and interpolate in the parametric domain.

However, since the density / is not compactly supported on each parametric domain, directly interpolating
the directional derivatives of / often results low order accuracy at points close to the boundary of the para-
metric domain. To achieve high-order approximation to the directional derivatives /a and /b, we use the par-
tition of unity again. Using /a as an example, we write
/aðxÞ ¼
X

k:x2gkðUkÞ
ðwk/ÞaðxÞ:
Here, wk/ are compactly supported functions in domains Uk and can be extended periodically. Therefore, on
each Uk we can use an interpolation procedure similar to the one we developed for interpolating w. Again, an
FFT-based preprocessing step is used to build a B-spline interpolant on an eight-fold refined grid for each
directional derivative. At the evaluation stage, we simply evaluate the interpolant to approximate the value
of (wk/)a.

3.3.2. Singular integral evaluation

Using Theorem A.6 we can accurately evaluate the integral in (20) by using the numerical integration oper-
ator YK (introduced in Section 3.2) on the double layer density / � /x, where /x(y) is a constant density with
value /(x) for any y 2 C. However, / � /x depends on the target point x, and the result YK(/ � /x) only gives
the valid pressure value at the point x. Clearly applying the operator YK to / � /x for each x is prohibitively
expensive. The algorithm we propose uses the linearity of YK to evaluate (K/)(x) at all points x simultaneously
and much more efficiently.

Observe that
ðY Kð/� /xÞÞðxÞ ¼ ðY K/ÞðxÞ � ðY K/xÞðxÞ ¼ ðY K/ÞðxÞ � ððY Ke1ÞðxÞ; ðY Ke2ÞðxÞ; ðY Ke3ÞðxÞÞ � /ðxÞ:

Algorithm 2 summarizes numerical integration of K/(x) for a set of points x on C, where e1, e2 and e3 are the
constant double layer densities on C with values (1, 0,0)t, (0,1,0)t and (0,0,1)t, respectively. Note that although
K/ is not defined for arbitrary smooth / (it is only defined for a smooth function / which vanishes at x), YK/

is defined for all points x as a numerical integration operator.

Algorithm 2 (Singular integration for the pressure).

Evaluate gd = YKed for d = 1,2,3.
Evaluate p = YK/.
for each evaluation point x do

p(x) p(x) � (g1(x),g2(x),g3(x)) Æ /(x).
end for

Since the operator YK has complexity O(N3/2), this algorithm also has complexity O(N3/2). For a fixed com-
bination of evaluation points and Nyström discretization points, the first step of the algorithm needs to be
done only once, and can be reused for different double layer density function /. As the discretization is refined,
however, convergence of the approximation to the correct values depends on cancellation: both values YK/

and YK/x at point x may increase, however, their difference approaches the correct limit value. This indicates
that the algorithm potentially may suffer from floating point errors due to the cancellation of large quantities.
However, by using double precision arithmetics, we have not observed the degradation of the accuracy in our
numerical experiments.

4. Nearly singular integration

In this section, we present the algorithm to evaluate the velocity u and the pressure p at an arbitrary point x
in the domain.
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For x 2 X, the expression for u is
Fig. 4.
x 2 X2
uðxÞ ¼ ðD/ÞðxÞ ¼
Z

C
Dðx; yÞ/ðyÞdy:
The integrand is not singular, since D(x,y) is not singular when x 62 C. If the distance from x to C is bounded
from below by a positive constant, we can bound the derivatives of the integrand. In this case, the trapezoidal
rule on each chart Uk, k = 1, . . . ,K with evenly spaced quadrature points ck,i has optimal accuracy. However,
as x approaches the boundary C, D(x,y) becomes nearly singular and oscillatory, and the derivatives of D(x,y)
with respect to y cannot be bounded uniformly.

We propose an algorithm that evaluates (D/)(x) at any point x 2 X from the values at quadrature points on
the boundary C with high-order accuracy, no matter how close x is to the boundary.

The idea of our algorithm is to partition X into three regions and use different schemes for integral evalu-
ation within each region. Given the discretization spacing h, we partition the domain X into the following
regions (see Fig. 4(a)):

� Well-separated: X0 ¼ fx 2 Xjdistðx;CÞ 2 ð
ffiffiffi
h
p

;1Þg.
� Intermediate: X1 ¼ fx 2 Xjdistðx;CÞ 2 ðh;

ffiffiffi
h
p
�g.

� Nearest: X2 = {x 2 X | dist(x,C) 2 (0, h]}.

If x is in the well-separated region X0, we use the trapezoidal rule on the Nyström points xk,i with weights
wk,i to evaluate (D/)(x), where wk,i are defined as in Section 3.2.

For the points x in the intermediate region X1, for each chart Uk, we resample the function wk on a refined
Cartesian grid with spacing h3/2 using the values wk,i at the original grid points xk,i with grid step h. Since both
grids are Cartesian and wk is periodic function on Uk, the resampling can be done first by computing FFT of
wk, then padding the higher frequency with zeros, and finally using inverse FFT to compute the values on the
refined grid. With wk’s values on the refined grid available, we use the trapezoidal rule on the new grid to eval-
uate D/(x). The denser sampling with spacing h3/2 ensures that the approximation order of the quadrature
rule is maintained (Appendix C).

Finally, for points in the nearest region X2, we interpolate between the values at points on the surface C and
points in X1 or X0. For each point x in X2, we first find a point x0 2 C such that
x0 � x

jx0 � xj � nðx0ÞP a; ð21Þ
where the value of a is less than but close to 1, which means that x � x0 is almost orthogonal to the tangent
plane at x0. The algorithm is not very sensitive to the value of a; we use a = 0.95 in our implementation. We
find x0 using a Newton-type nonlinear iteration to maximize the dot product left-hand side of (21). In most
cases, the nonlinear solver finds such a point x0 in 3 or 4 iterations.

We then define points {xl, l = 1, . . . ,L} by
xl ¼ x0 þ l
x� x0

jx� x0j
bh;
Γ

Ω1

Ω2

Ω0

x

n (x 0)
x 0

x 1

x L

Γ

Ω1

Ω2

. .
.

Evaluation of nearly singular integrals. (a) Different regions based on their distance to the boundary. (b) Evaluation procedure for
.
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where b is a constant such that ab is greater than but close to 1. Since a is close to 1, we can choose b to be
close to 1, as well. We then use the singular quadrature algorithm described in Section 3 to evaluate
1
2
/ðx0Þ þ D/ðx0Þ, which is the limit of D/ at x0. The points {xl, l = 1, . . . ,L} are now in X1 or X0 since

ab P 1, and we evaluate {(D/)(xl), l = 1, . . . ,L} using the procedure described above for regions X1 and
X0. Finally, we use these values at {xl, l = 0, . . . ,L} to perform a 1D Lagrange interpolation of order L to
obtain the value of D/ at x (see Fig. 4(b)). The order of interpolation is chosen to achieve the desired conver-
gence rate, as discussed in Appendix C.

4.1. Summary and complexity analysis

To evaluate the velocity on O(N3/2) points that uniformly sample X with approximately the same discret-
ization used for the boundary, we first identify for each point to which region (X0, X1 or X2) it belongs and
then use the corresponding algorithm described in the previous section.

� There are O(N3/2) points in the well-separated region X0. We evaluate the velocity using the trapezoidal rule
on the quadrature points xk,i with FMM acceleration. This step has complexity O(N3/2).
� There are O(N5/4) points in intermediate region X1. We first interpolate / onto a refined grid with spacing

h3/2 and evaluate the potential using the trapezoidal rule on the refined quadrature points with again FMM
acceleration. The complexity of this step is also O(N3/2).
� There are O(N) points in nearest region X2. For each point x in X2, we first find the correspondent x0 and xl

for l = 1, . . . ,L. The evaluation of 1
2
/ðx0Þ þ ðD/Þðx0Þ for all points {x0: x 2 X2} can be achieved by using

the algorithm in Section 3. We then evaluate {(D/)(xl): x 2 X2, l = 1, . . . ,L} using the refined grid with
FMM acceleration. The complexity of the evaluation for {x 2 X2} is O(N3/2) again.

Summing up the costs of all three regions, we conclude that the complexity of the complete algorithm is
O(N3/2).

In Appendix C, we give a proof for the convergence rate of the algorithm. Assuming the boundary surface
and the Dirichlet data are infinitely smooth, the error of the evaluation is O(hL), which is governed by the
order L of the 1D Lagrange interpolation.

The algorithm to evaluate the pressure p at arbitrary point x in X is similar to the presented algorithm for u.
The only difference is that since p contains a higher-order singularity. Therefore, the error bound for the veloc-
ity of points in regions X1 and X2 decreases more slowly with h, and this is observed in practice. To improve
the accuracy, we use singularity subtraction: for a point x in X1 or X0 that is close to C, we find its nearest
point x0 on the boundary. Then instead of evaluating the pressure using

R
C Kðx; yÞ/ðyÞdsðyÞ, we use
Z

C
Kðx; yÞð/ðyÞ � /x0ðyÞÞdsðyÞ;
where /x0ðyÞ ¼ /ðx0Þ for any y. Similarly in the case of singular quadrature, the order of singularity is reduced.
Efficient implementation for the second integral tracks the ideas in Section 3.3.

Remark 4.1. The algorithms for nearly singular integration for the Laplace equation and the Navier equation
are exactly the same.
5. Inhomogeneous Stokes equations

In the preceding sections we have focused on the homogeneous Dirichlet problem for the Stokes equations:
�lDuþrp ¼ f in X;

divu ¼ 0 in X;

u ¼ b on C;

8><
>: ð22Þ
where f = 0. In this section, we present an extension of the embedded boundary integral method [9] to solve
the inhomogeneous case of (22) with general f.



'

Fig. 5. Domains X and X 0.
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We assume that f is defined on a rectangular domain X 0, which contains X. Even if f is defined only on X, it
is typically possible to extend f onto X 0. The domain X 0 is discretized by a uniform grid with spacing h. The
outputs of our algorithm are the velocity and pressure fields at the grid points inside domain X (see Fig. 5).
The method can be extended to adaptively refined Cartesian grids.

The embedded boundary integral method splits the solution of the problem into several steps. We start by
choosing a function g defined on X 0, which satisfies two conditions:

� g(x) = 1 for all x 2 X,
� g and all its derivatives vanish at the boundary of X 0.

Then we replace f with fg which can be extended to a smooth periodic function on R3, with X 0 as a periodic
domain. Since f = fg on X, this replacement does not affect our original problem (22). We then decompose fg
into two parts: fg = fc + f0, where fc is constant over X 0 and

R
X0 f0ðxÞdx ¼ 0. This decomposition is unique and

both functions still can be extended to smooth periodic with X 0 as the periodic domain.
We decompose (22) into three problems. The first problem is defined on simpler domain X 0 with periodic

boundary conditions:
�lDu0 þrp0 ¼ f0 in X0;

divu0 ¼ 0 in X0:

�
ð23Þ
The problem has a unique solution with p0 determined up to a constant, since
R

X0 f0ðxÞdx ¼ 0. We discretize
the domain using a uniform grid with spacing h. u0 and p0 are solved with a spectral element method based on
trigonometric basis and FFT.

The second problem is:
�lDu1 þrp1 ¼ fc in X0;

divu1 ¼ 0 in X0

�
ð24Þ
with no conditions at the boundary of X 0. We simply choose u1 = 0 and p1 = fc Æ x as the solution.
The last problem is a homogeneous problem over X:
�lDu2 þrp2 ¼ 0 in X;

divu2 ¼ 0 in X;

u2 ¼ b� u0 � u1 on C:

8><
>: ð25Þ
We use our boundary integral solver for this problem and evaluate u2 and p2 for the grid points inside X. The
solution of (23) yields values of u0 only for a regular grid in X 0, while we need the values of u0 at the Nyström
points on the boundary surface C for the boundary conditions of (25). We use a standard high-order spline
interpolation method to obtain these values.

By linearity, velocity u = u0 + u1 + u2 and pressure p = p0 + p1 + p2 evaluated at grid points inside X solve
the original problem (22). The velocity field u2 and pressure field p2 in X are evaluated as explained in Section 4.



L. Ying et al. / Journal of Computational Physics 219 (2006) 247–275 263
Remark 5.1. The proposed approach works for the Laplace equation and the Navier equation. The only
difference is the explicit solution of the second problem. For the Laplace equation, the second problem is
Table
Singul

h

0.1000
0.0500
0.0250
0.0125
0.0062

Colum
error o
time sp
estima
make i
�Du1 ¼ fc in X0:
We use the explicit solution
u1 ¼ �
fc

6
ðx2 þ y2 þ z2Þ:
For the Navier equation, the second problem is
�lDu1 �
l

1� 2m
rdivu1 ¼ f c in X0:
Assuming f c ¼ ðf x
c ; f

y
c ; f

z
c Þ

t, we use the explicit solution
u1 ¼ �
1

4l

f x
c ðy2 þ z2Þ

f y
c ðx2 þ z2Þ

f z
c ðx2 þ y2Þ

0
B@

1
CA:
6. Numerical results

6.1. Implementation

The algorithms described in the previous sections have been implemented in C++. External libraries
include PETSc [6] and FFTW [17]. All tests were performed on a Linux PC with 1GB memory and a
2 GHz CPU. The boundary of the domains of the test examples was represented using either analytic param-
eterization or the method of Ying and Zorin [51]. L, the number of extra points introduced for each nearby
evaluation in the nearest region X2 (see Section 4), is set to be 4 in all examples.

6.2. Special solution tests

We use closed form solutions of the boundary integral equations to test the accuracy and efficiency of the
singular and nearly-singular quadrature rules described in the previous sections. We set the accuracy of the
kernel-independent FMM to be smaller compared to the quadrature error from integrating the singularity.
Unless otherwise noted, the FMM accuracy is equal to 10�8.

Table 1 shows the results for the Laplace equation on a bounded domain. The boundary surface is shown in
Fig. 6(c). The special solution we chose is u(x) = 1 for x 2 X. In this case, the exact double layer density is
equal to 1, as well. To test the singular quadrature algorithm, we choose N points on the boundary surface,
and compare the exact solution u = 1 and the numerical solution at these points computed using the exact
1
ar and nearly-singular integration of the Laplace kernel

N Ts Errors Rates Tn Errorn Raten

0 1688 1.660e + 00 7.551e � 04 3.3604 5.100e � 01 5.259e � 04 2.8486
0 5480 8.980e + 00 7.352e � 05 3.7527 2.950e + 00 7.301e � 05 3.5945
0 20,736 6.928e + 01 5.456e � 06 2.8887 2.229e + 01 6.046e � 06 2.9417
0 78,792 4.636e + 02 7.367e � 07 3.1928 1.039e + 02 7.869e � 07 3.1084
5 309,520 3.202e + 03 8.057e � 08 6.443e + 02 9.124e � 08

ns: h is the spacing of discretization, N is the number of Nyström points, Ts is the time spent on singular evaluation, Errors is the
f singular evaluation, Rates is the rate of convergence estimated from the errors of two consecutive singular evaluations, Tn is the
ent on nearly-singular evaluation, Errorn is the error of nearly-singular evaluation, and finally, Raten the rate of convergence

ted from the errors of two consecutive nearly-singular evaluations. In the last run, the FMM accuracy is set to be 10�10 in order to
t substantially smaller than the quadrature error from singular integration.



Fig. 6. Boundary surfaces of the test domains. For each plot, the grid shows the Nyström points in a single patch.
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double layer density. To test the nearly-singular quadrature algorithm, we choose N points from the interior of
the domain, which are very close to the surface.

For the Stokes equations, we use the unit ball as the test domain. The special solution we use is the rigid
body fluid rotation. The associated velocity field is u(x) = x · x for x 2 X where x is the angular velocity vec-
tor of the rotation and has unitary norm. In this case, the double layer density /(x) is equal to x · x, as well.
Table 2 summarizes the test results for singular and nearly-singular quadrature methods for the double layer
Stokes kernel. For both Stokes and Laplace equations, numerical results confirm higher-order convergence of
our quadrature rules.

The convergence rate of both examples is mostly between 3 and 4. This rate is primarily determined by the
radius of the floating partition of unity, which is set to be Oð

ffiffiffi
h
p
Þ in these examples. Extra numerical tests show

that a floating partition of unity with radius O(h1/4) does increase the convergence rate substantially, but at the
cost of higher computational complexity.

6.3. Homogeneous and inhomogeneous boundary value problems

Next we show results for several homogeneous and inhomogeneous elliptic boundary value problems. We
use PETSc’s GMRES solver with restart number equal to 40 and halting relative tolerance equal to 10�9. The
FMM accuracy is again set to be 10�8 in most runs, except a few with high resolution grids, for which the
FMM accuracy is equal to 10�10. In every test, we embed the domain into a dense regular grid with cell size
matching the spacing h used to discretize the boundary of the domain. As a result, the distances between many
Cartesian grid points and the domain boundary are less than h, which allows us to fully test the nearly-singular
evaluation algorithm. The solution is evaluated at the Cartesian gridpoints inside the domain. In every test,
this evaluation step is 2–3 times slower than one iteration of the boundary integral solver. We report the
relative error, which is the ratio between the L2 norms of the absolute error and the exact solution.

Example 1. In this example, we solve the Laplace equation on a single-surface bounded domain with non-
trivial topological structure. The boundary surface is shown in Fig. 6(a). It is embedded in the cube [�1,1]3.
The exact solution we use is u(x,y,z) = 1 + xyz. The results are shown in Table 3.
Table 2
Singular and nearly-singular integration of the Stokes kernel

h N Ts Errors Rates Tn Errorn Raten

0.1000 2400 2.410e + 00 3.489e � 04 2.9958 4.460e + 00 5.072e � 04 3.3098
0.0500 9600 1.621e + 01 4.374e � 05 3.9773 2.113e + 01 5.115e � 05 4.0126
0.0250 38,400 1.228e + 02 2.778e � 06 3.5311 1.664e + 02 3.169e � 06 3.7214
0.0125 149,784 9.142e + 02 2.403e � 07 1.333e + 03 2.403e � 07

The headers for the columns are the same as in Table 1.



Table 3
Example 1. Laplace equation on a bounded domain with boundary shown in Fig. 6(a)

h N Iterations FMM(s) Local(s) Total(s) Error Rate

0.1000 2158 11 2.698e � 01 1.565e + 00 2.019e + 01 3.494e � 03 4.6798
0.0500 7390 10 1.452e + 00 1.023e + 01 1.168e + 02 1.363e � 04 3.9690
0.0250 26,956 8 5.592e + 00 8.501e + 01 7.248e + 02 8.704e � 06 2.4746
0.0125 103,209 8 2.027e + 01 5.367e + 02 4.456e + 03 1.566e � 06

Columns: the discretization spacing h, the number of quadrature points N, the number of GMRES iterations, the number of seconds for
each FMM evaluation, the number of seconds for local corrections for singularities, the total solution time, the relative L2 error of the
solution at the gridpoints, and the rate of convergence estimated from the errors of two consecutive discretizations.
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Example 2. In this example, we solve the Stokes equations on an unbounded domain. The boundary surface
consists of eight spheres in the cube [�1,1]3 (see Fig. 6(b)). The exact solution we choose is
Table
Examp

h

0.1000
0.0500
0.0250
0.0125

Table
Examp

h

0.1000
0.0500
0.0250
0.0125
uðxÞ ¼
XM

m¼1

ðSðx� pmÞam þ Rðx� pmÞbmÞ;
where S is the Stokeslet, R is the Rotlet, am and bm are unit vectors with random direction, and pm are points in
the spheres different from the points zm used in the integral formulation. The test results are shown in Table 4.

Example 3. We solve the Navier equation on a single-surface bounded domain. The boundary surface
(Fig. 6(c)) is contained in [�1,1]3. The exact solution we choose is the sum of eight Green functions of the
Navier equation centered at points (±1,±1,±1). The force vector for each Green function is a random unit
vector. The results are shown in Table 5.

Example 4. In this example we test the embedded boundary integral method described in Section 5 on an
inhomogeneous Laplace problem
�Du ¼ f
on an single-surface bounded domain. The boundary surface (Fig. 6(c)) is contained in [�0.8, 0.8]3. We use the
exact solution:
uðx; y; zÞ ¼ expð
ffiffiffi
2
p

pxÞ sinðpðy þ zÞÞ þ 1
6
ðx3 þ y3 þ z3Þ;

f ðx; y; zÞ ¼ �ðxþ y þ zÞ:

(

We embed the domain into the regular domain [�1,1]3. The FFT-based uniform grid solver takes only a cou-
ple of seconds in all the runs. The performance of the boundary integral solver component, along with the
overall error, is shown in Table 6.
4
le 2. Stokes equations on an unbounded domain with boundary shown in Fig. 6(b)

N Iterations FMM(s) Local(s) Total(s) Error Rate

3072 22 2.050e + 00 1.070e + 00 6.864e + 01 1.408e � 03 3.2230
12,288 21 1.080e + 01 8.250e + 00 4.001e + 02 1.508e � 04 5.6594
43,200 23 6.927e + 01 6.566e + 01 3.103e + 03 2.984e � 06 3.5413

172,800 20 3.456e + 02 6.279e + 02 1.947e + 04 2.563e � 07

5
le 3. Navier equation on a single-surface bounded domain with boundary shown in Fig. 6(c)

N Iterations FMM(s) Local(s) Total(s) Error Rate

2320 13 1.170e + 00 1.840e + 00 3.913e + 01 9.822e � 04 4.8379
8504 12 7.920e + 00 1.234e + 01 2.431e + 02 3.435e � 05 3.4423

31,528 12 4.337e + 01 1.123e + 02 1.868e + 03 3.160e � 06 3.1018
122,736 12 1.602e + 02 8.543e + 02 1.2904+04 3.681e � 07



Table 6
Example 4. Poisson equation on a single-surface bounded domain (Fig. 6(c))

h N Iterations FMM(s) Local(s) Total(s) Error Rate

0.1000 1688 10 1.700e � 01 1.250e + 00 1.420e + 01 3.166e � 03 3.6949
0.0500 5480 10 1.140e + 00 7.460e + 00 8.600e + 01 2.445e � 04 4.0170
0.0250 20,736 10 5.120e + 00 6.346e + 01 6.858e + 02 1.510e � 05 2.9193
0.0125 78,792 10 1.883e + 01 4.554e + 02 4.742e + 03 1.996e � 06

Only the data for the boundary integral solver are shown.
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Example 5. This example demonstrates the handling of more complex geometry. We solve the Laplace prob-
lem on an unbounded domain with boundary shown in Fig. 7(a), contained in [�1,1]3. The solution is set to be
1 on the boundary and approaches 0 at infinity. The performance is reported in Table 7. Fig. 7(b) shows the
potential field on several slices of the domain.

Example 6. This example computes the Stokes flow around a static object (Fig. 8(a)). The flow velocity is
(0,0,1) at infinity and zero at the surface of the object. We evaluate the solution on a regular grid in box
(±1,±1,±2). Fig. 8(b) shows the magnitude of the flow velocity for several slices of the domain and the
streamlines of the flow. The performance of the solver is reported in Table 8.

Example 7. Here, we compute the Stokes flow around a shape similar to starfish vesicles [48], Fig. 9(a). The
boundary of the domain is shown in Fig. 9(b). The flow velocity is (0,0,�1) at infinity and zero at the surface
of the object. We evaluate the solution in a regular grid in box (±1,±1,±2). Fig. 9(c) shows the magnitude of
the flow velocity on several slices of the domain and the streamlines of the flow. The performance of the solver
is reported in Table 9.
Fig. 7. Example 5. Laplace equation on an unbounded domain. (a) The boundary surface of the domain and the cubic region for which
the solution is evaluated. (b) Cross-section view of the solution.

Table 7
Example 5. Laplace equation on an unbounded domain (Fig. 7)

h N Iterations FMM(s) Local(s) Total(s)

0.1000 1928 26 2.200e � 01 1.390e + 00 4.186e + 01
0.0500 7720 25 1.070e + 00 1.032e + 01 2.848e + 02
0.0250 29,144 21 6.510e + 00 8.822e + 01 1.989e + 03



Fig. 8. Example 6. Stokes equations on an unbounded domain. (a) The boundary surface of the domain and the rectangle region where
the solution is evaluated. (b) Velocity magnitude for several cross-sections and streamlines of the fluid field.

Table 8
Example 6. Stokes equations on an unbounded domain (Fig. 8)

h N Iterations FMM(s) Local(s) Total(s)

0.0500 5465 84 3.750e + 00 6.600e + 00 8.694e + 02
0.0250 19,684 69 2.031e + 01 5.545e + 01 5.227e + 03

Fig. 9. Example 7. Stokes equations with an unbounded domain. (a) A starfish vesicle from [48]. (b) The boundary surface of the domain.
(c) The velocity magnitude and flow streamlines.
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In the first four examples which have exact solutions, we observe an overall convergence rate between 3 and
4. In each example, the time of FMM computation increases linearly with respect to the number of the quad-
rature points. On the other hand, the time of performing the local corrections for integration near singularities
grows more rapidly: it increases by a factor of eight as the number of Nyström points quadruples. These
results match the analysis in Section 3.2.



Table 9
Example 7. Stokes equations with an unbounded domain

h N Iterations FMM(s) Local(s) Total(s)

0.0500 4304 120 2.955e + 00 5.745e + 00 1.044e + 03
0.0250 16,636 91 1.823e + 01 5.031e + 01 6.237e + 03
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7. Conclusions

We have presented a high-order 3D boundary integral solver for elliptic PDEs for arbitrary domains with
smooth boundaries. For problems requiring evaluation at sufficiently many points in the spatial domain, the
solver has optimal complexity (linear in the number of evaluation points).

Numerical studies confirmed the expected asymptotic behavior for a variety of geometries and equations.
Our boundary integral solver was also used to solve inhomogeneous problems on arbitrary 3D domains with
smooth boundaries.

In this paper, we have not considered the problem of parallelizing this type of solvers. While the two most
critical components (the kernel-independent FMM and FFTW) have been parallelized [50], other components
(local corrections for singular integration, nearly singular integration) are not. Although they should be
relatively easy to parallelize due to the local nature of computations involved, a complete scalable implemen-
tation is far from trivial and is a topic for future work.

While exhibiting expected asymptotic behavior, our current implementation is far from optimal, as the
emphasis was on correctness rather than efficiency. Similarly, performance of many parts of the code can
be improved.

Finally, we have only considered domains with smooth boundaries in this paper. However, domains with
sharp features play an important role in many engineering applications. Extension of the current approach to
domains with piecewise smooth boundaries is another important research direction, which likewise is no trivial
if we want to preserve the high-order convergence rate.
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Appendix A. Error estimates for quadrature rules

In this appendix we derive the error bounds for the quadrature rules described in Section 3. These rules are
used to compute the integrals
Z

U
Dðx; gðcÞÞwðcÞdc and

Z
U

Kðx; gðcÞÞðwðcÞ � wðc0ÞÞdc ð26Þ
over planar domains U for x = g(c 0) for a fixed c 0 2 U. We assume that the values at quadrature points are
computed exactly, g(Æ) is C1-continuous but not necessarily analytic, its Jacobian is of maximal rank and
the functions / are CM continuous for some M P 3. The assumption on continuity of g(Æ) can be relaxed if
necessary, but we use the stronger assumption (of C1 smoothness) as all the surface parameterizations we
use are C1-continuous.

We use o
m
z f to denote mth derivative of f with respect to variable z. We use C to denote constants in esti-

mates, which may be different in different formulas.
The error of one-dimensional trapezoidal rule applied to a periodic CM-continuous function on its period

[0, t] is
�1D
trap 6 CðMÞhM sup

½0;t�
joM f j: ð27Þ
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Let Iz be the operator f !
R tz

0
f ðz; . . .Þdz, where f is periodic in z with the period equal to tz. Let Ih

z be the one-
dimensional trapezoid rule operator, with spacing h = tz/N in variable z: Ih

z f ¼
PN

i¼0hf ðzi; . . .Þ. Consider a
function of two variables u and v. Then we observe that operators applied to different variables commute. This
allows us to express the error for the two-dimensional rule as follows:
�2D
trap ¼ IuIvf � Ihu

u Ihv
v f ¼ IuIvf � Ihu

u Ivf
	 


þ IvIhu
u f � Ihv

v Ihu
u f

	 

:

The first term is the error of the trapezoidal rule used to integrate Ivf with respect to u; the second term is the
error of the trapezoidal rule used to integrate Ihu

u f with respect to v. Applying the error estimates and observ-
ing that ou commutes with Iv and ov commutes with Ihu

u , we obtain the estimate
�2D
trap < CðMÞhM

u sup
½0;tu�

Z tv

0

o
M
u f dv

����
����þ CðMÞhM

v sup
½0;tv�

XNv

0

ðoM
v f Þðu; ihvÞ � hu

�����
�����:
Bounding the integral and the sum from above, we obtain the error bound for the two-dimensional trapezoidal

rule:
�2D
trap < CðMÞ hM

u sup
½0;tu�
joM

u f j þ hM
v sup
½0;tv �
joM

v f j
 !

: ð28Þ
We first prove the convergence result of the quadrature rule used for D(x,y)/(y).

Lemma A.1. Suppose f ðqÞ : A! R, is a CM-continuous function, f(q)|q|�k, k < M, is bounded, and A � R2

contains the disk of radius a centered at zero. Let q(q,h) = (qcosh,q sinh). Then

1. f(q(q,h))q�k is CM�1-continuous on [�a,a] · [0,p].

2. The derivatives of f(q)|q|�k of order m 6M � 1 are bounded from above by Cq�m.

Proof. Let f(q,h) = f(q(q,h)). For q 6¼ 0, the first part of the lemma follows from the chain rule; we only need
to show that oj

qo
i
hðq�kf Þ converges as q! 0, for i + j 6M � k, and the limit is a continuous function of h. To

simplify exposition, we consider oj
q only; the general case is analogous.

Let T f
mðqÞ, M P m P k, be the Taylor polynomial of degree m at zero for the function f(q,h) with respect to

q, with coefficients dependent on h. Then f can be expressed as
f ¼ T f
m þ Rmþ1;
where Rm+1q�m! 0 for q! 0. Because fq�k is bounded, the first k � 1 terms of T f
m are zero. Also, oj

qT f
m is the

Taylor polynomial of degree m � j for o
j
qf :
oj
qf ¼ oqT f

mf þ Rmþ1�j
j ;
where Rmþ1�j
j q�ðm�jÞ ! 0 for q! 0. By comparing the formulas for f and oj

qf we obtain the equality
Rm�jþ1

j ¼ oj
qRmþ1.

Consider
oj
qðq�kf Þ ¼ oj

qðq�kT f
mÞ þ oj

qðq�kRmþ1Þ:
Because the first k � 1 terms of T f
m are zero, the first term is a derivative of a polynomial and is well-defined for

any q; the limit at q = 0 can be easily verified to be ðj!=k!Þðokþj
q f Þð0Þ. It remains to verify that the limit of

o
j
qðq�kRmþ1Þ. By the product derivative formula,
oj
qðq�kRmþ1Þ ¼

X l

j

� �
ol

qRmþ1 k!

ðj� lÞ! q
�k�jþl:
As o
l
qRmþ1 ¼ Rmþ1�l

l , each term can be rewritten as CðRm�lþ1
l q�ðm�lÞÞqm�k�j. As Rmþ1�l

l q�ðm�lÞ ! 0 as q! 0 (it is
a remainder term in Taylor expansion of o

l
qf of degree m � l), the whole sum converges to zero if m P j + k.

As we can choose m in the range from 0 to M, we conclude that the limit of o
j
qðq�kf Þ at q = 0 is

ðj!=k!Þðokþj
q f Þð0Þ, if k + j 6M. Its continuity follows from the continuity of derivatives of f.
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The second part of the lemma easily follows from the first. If f is differentiable in polar coordinates, then at
any point away from zero, we can express derivatives with respect to q1 and q2 as o1 = coshoq � q�1 sinhoh and
o2 = sinhoq + q�1 coshoh, respectively. As fq�1 is bounded and all derivatives up to order M � 1 with respect
to h and q are bounded, in the expressions for the derivatives of f the only factors that are not bounded have the
form q�l, and one can show by induction that for derivatives of order m, the maximal value of l is m. h

We observe that if the function f is C1-continuous, the lemma can be applied for arbitrary M.

Lemma A.2. Let g(c) be a C1-continuous regular parametrization of a part of the boundary C, c 0 a fixed point in

the parametrization domain C containing a disk of radius a centered at c 0, and (q,h) is a polar coordinate system

centered at c 0. The kernel D(x, y) defined by (2) has the following properties on the boundary:

1. qD(g(c 0), g(c(q,h))) is a C1-continuous function of q and h on [�a,a] · [0,p];

2. as q! 0, the mth order derivatives of D(g(c 0), g(c)) with respect to c are O(q�(m+1)).

Proof. Let r = g(c 0) � g(c). The matrix function qD can be decomposed into a combination of several func-
tions, each satisfying the conditions of Lemma A.1:
qDðgðc0Þ; gðcÞÞ ¼ � 3

4p
ðr=q� r=qÞ ðr � nðgðcÞÞÞ

q2
ðr2=q2Þ�5=2

:

As g is non-singular at c = c 0, all components of r/q are bounded from below, as is r2/q2. For (r Æ n(g(c))), an
explicit calculation using Taylor expansions shows that the linear terms in q vanish, and the first non-zero
terms are of order q2.

By Lemma A.1, r/q, r2/q2 and (r Æ n(g(c(q,h)))) are all C1-continuous in polar coordinates.
As r2/q2 can be bounded from below by a constant C > 0, the negative power function in the last factor of

the decomposition does not affect smoothness, so qD(g(c 0),g(c(q,h))) is C1-continuous.
Using the second part of Lemma A.1, we conclude that the growth of mth derivatives of qD is bounded by

qm. To obtain the rate of growth for derivatives of D, we apply the product derivative formula to (qD)q�1; the
resulting rate is qm+1. h

Theorem A.3. The error of the quadrature rules of Section 3.1 for the integral (D/)(x), evaluated at any x on the

boundary C is OðhM�1
2 Þ if / is CM continuous.

Proof. We consider two parts of the integral separately.
Non-singular part. In this case, the singularity is eliminated by multiplying D by (1 � g0(c)), with

g0ðcÞ ¼ vðc=
ffiffiffi
h
p
Þ where v: [0,1)! [0,1] is a C1 function which is 1 in a neighborhood of zero, and v(r) = 0

for r P 1.
To apply the estimate for the trapezoidal rule (28), we need to estimate the magnitude of the derivative of

the integrand, which depends on h. By Lemma A.2 mth derivatives of D are O(q�m�1); as 1 � g0(c) vanishes in
a circle of radius

ffiffiffi
h
p

=4, derivatives of D contribute to the derivatives of the product only outside this circle,
and can be bounded by Ch�(m+1)/2.

We obtain the bound hm/2 for the derivatives of (1 � g0(c)) of order m by applying the chain rule to vð�=
ffiffiffi
h
p
Þ.

Substituting the bounds for om
j D and om

j ð1� g0ðcÞÞ into the product derivative formula for
oM

j ðDðgðc0Þ; gðcÞÞð1� gðcÞÞ/ðcÞÞ, we obtain
joM
j Dðgðc0Þ; gðcÞÞð1� gðcÞÞ/ðcÞð Þj < Ch�

Mþ1
2 :
Combining this estimate with the 2D trapezoidal rule error estimate, we obtain the error bound for the first
part of the integral: O(hM�(M+1)/2) = O(h(M�1)/2).

Singular part. This part is integrated using the trapezoidal rule in polar coordinates. We integrate
qD(g(c 0),g(c(q,h)))/(q,h)g0(q). We denote f(q,h) = qD(g(c 0),g(c(q,h)))/(q,h). By Lemma A.1, f is a CM-
continuous function. The function fg0 vanishes for q ¼ 1=

ffiffiffi
h
p

and is periodic in h; therefore, it can be extended
to a periodic CM-continuous function on the plane and the trapezoidal rule error estimate applies.
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The derivatives om
h ðf g0Þ are all bounded with respect to h, as g0 does not depend on h. Similarly to the non-

singular case, we obtain estimates for om
q ðf g0Þ by using the chain rule to bound derivatives of g0 from above by

Ch�m/2, and use the product derivative rule and boundedness of derivatives of f to extend the bound to
om

q ðf g0Þ.
Applying (28), with hh ¼

ffiffiffi
h
p

, hq = h, and with oM
h ðf g0Þ ¼ Oð1Þ and oM

q ðf g0Þ ¼ Oðh�M=2Þ, we obtain the
error bound of order O(hM/2).

Combining the error bounds for the singular and non-singular parts yield the statement of the theorem. h

We then prove the convergence result of the quadrature rule used for K(x,y)(/(y) � /(x)).

Lemma A.4. Suppose that f : R! R can be written in the following form:
f ðqÞ ¼ 1

q
SðqÞ;
where S is a CM function. Then the trapezoidal rule with quadrature points at ðk � 1
2
Þh results an OðhM�1

2 Þ error for

the integral
Z ffiffi
h
p

�
ffiffi
h
p f ðqÞv jqjffiffiffi

h
p
� �

dq:
Proof. We use the singularity subtraction to rearrange the integral:
Z ffiffi
h
p

�
ffiffi
h
p

1

q
SðqÞv jqjffiffiffi

h
p
� �

dq ¼
Z ffiffi

h
p

�
ffiffi
h
p

1

q
ðSðqÞ � Sð0ÞÞv jqjffiffiffi

h
p
� �

dqþ
Z ffiffi

h
p

�
ffiffi
h
p

1

q
v
jqjffiffiffi

h
p
� �

dq

 !
Sð0Þ:
The integrand of the first integral is CM�1-continuous and can be extended periodically. The trapezoidal rule
with quadrature points ðk � 1

2
Þh has OðhM�1

2 Þ accuracy for this integral. The second integral is a Cauchy integral
with the principal value zero. The trapezoidal rule for this integral with ðk � 1

2
Þh as quadrature points produces

zero as well, since the quadrature points, the function vð j�jffiffi
h
p Þ and the integration domain are symmetric around

the origin.
Therefore, the trapezoidal rule has an overall error of order OðhM�1

2 Þ for the principal value of the
integral. h

Lemma A.5. Let g(c) be a C1-continuous regular parametrization of a part of the boundary C, c 0 a fixed point in

the parametrization domain C containing a disk of radius a centered at c 0, and (q,h) is a polar coordinate system

centered at c 0. Suppose / is CM.

The function K(x,y)(/(y) � /(x)) has the following properties on the boundary:

1. qK(g(c 0),g(c(q,h)))(/(y) � /(x)) can be written as S(q,h)/q in polar coordinates, where S is a CM�1 function.

2. As q! 0, all mth derivatives of K(g(c 0), g(c(q,h)))/(y) � /(x) with respect to c are O(q�(m+3)) for any m 6M.

Proof. We consider the function q2K(g(c 0),g(c(q,h)))(/(y) � /(x)). Let r = g(c 0) � g(c(q,h)). Since
Kðgðc0Þ; gðcðq; hÞÞÞ ¼ nðyÞ
jrj3
� 3
ðr � nðyÞÞr
jrj5

 !
:

By Lemma A.1 implies that q3 K(g(c 0), g(c(q,h))) is a C1 function in polar coordinates. Also by Lemma A.1
for CM functions, (/(y) � /(x))/q is a CM�1 function in the polar coordinates. Thus, q2K(g(c 0),g(c(q,h)))(/
(y) � /(x)) is a CM�1 in polar coordinates, which proves the first property.

Since q3K(g(c 0), g(c(q,h))) is a C1 function in polar coordinates, it follows that
q3Kðgðc0Þ; gðcðq; hÞÞÞð/ðyÞ � /ðxÞÞ
is a CM function in polar coordinates. Using the second part of Lemma A.1 and the product derivative for-
mula, we conclude that the mth derivatives of K(g(c 0),g(c(q,h)))(/(y) � /(x)) are O(q�(m+3)). h
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Theorem A.6. The error of the quadrature rule of Section 3.1 for the integral of K(x,y)(/(y) � /(x)) evaluated

at any x on the boundary of C is OðhM�3
2 Þ if / is CM.

Proof. The structure of the proof is similar to the proof of Theorem A.3. The integral over each patch U is
decomposed into two parts:
Z

U
Kðgðc0Þ; gðcÞÞð1� gc0 ðcÞÞðwðcÞ � wðc0ÞÞdcþ

Z
U

Kðgðc0Þ; gðcÞÞgc0 ðcÞðwðcÞ � wðc0ÞÞdc:
The integrand of the first integral is not singular. The Mth derivatives of 1� gc0 ðcÞ are OðhM
2 Þ and the M

derivatives of K(g(c 0),g(c))(w(c) � w(c 0)) on the support of 1� gc0 ðcÞ can be bounded by OðhMþ3
2 Þ by the second

part of Lemma A.5. It follows from product derivative formula that the mth derivatives of
Kðgðc0Þ; gðcÞÞð1� gc0 ðcÞÞðwðcÞ � wðc0ÞÞ are of order OðhMþ3

2 Þ. Applying the error estimate of the 2D trapezoidal
rule results an error bound of OðhM�3

2 Þ.
We write the second integral, which is singular, in polar coordinates:
Z Z

qKðgðc0Þ; gðcÞÞgc0 ðcÞðwðcÞ � wðc0ÞÞdqdh:
It follows from the first part of Lemma A.5 that the integrand can be written as S(q,h)q where S(q,h) is a
CM�1 function. We use Lemma A.4 to conclude that the 1D quadrature rule for
Z

qKðgðc0Þ; gðcÞÞgc0 ðcÞðwðcÞ � wðc0ÞÞdq ð29Þ
has an error bound OðhM�2
2 Þ. Since (29) as a function of h is periodic for h 2 [0,p], the convergence rate of the

quadrature rule for the second integral is also OðhM�2
2 Þ.

Combining the error bounded for the non-singular and singular parts, we conclude the overall error bound
is OðhM�3

2 Þ. h
Appendix B. Derivation of pressure jump

We choose a local orthonormal frame a,b in the tangent plane at x. There are three conditions on the
jumps:
½½u�� ¼ /; ð30Þ
½½ð�pI þ lðruþrutÞÞn�� ¼ 0 ðLyaponov-Tauber conditionÞ; ð31Þ
½½divu�� ¼ 0: ð32Þ
Let a,b be a local orthonormal frame in the tangent plane at x. Differentiating in directions a and b in (30), we
get
½½ru��a ¼ /a; ½½ru��b ¼ /b:
This implies the following six equalities:
at½½ru��a ¼ at/a; at½½ru��b ¼ at/b;

bt½½ru��a ¼ bt/a; bt½½ru��b ¼ bt/b;

nt½½ru��a ¼ nt/a; nt½½ru��b ¼ nt/b:
Taking dot products of (31) with a and b results in
atð½½ru�� þ ½½ru��tÞn ¼ 0; btð½½ru�� þ ½½ru��tÞn ¼ 0:
Since divu = tr($u) and tr(A) = tr(ABB�1) = tr(B�1AB),
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trðða; b; nÞt½½ru��ða; b; nÞÞ ¼ 0;
which is equivalent to
at½½ru��aþ bt½½ru��bþ nt½½ru��n ¼ 0:
Combining all conditions on [[$u]], we obtain
½½ru�� ¼ ða; b; nÞ
at/a at/b �nt/a

bt/a bt/b �nt/b

nt/a nt/b �at/a � bt/b

0
B@

1
CAða; b; nÞt:
Putting it back into (31), we have
½½p�� ¼ �2lðat/a þ bt/bÞ:
Appendix C. Error estimate of nearby evaluation

In this appendix, we prove that the algorithm described in Section 4 achieves high-order convergence.

Lemma C.1. For x 2 X0, the error of the algorithm is OðhM
2�1Þ if / is CM-continuous.

Proof. For a fixed x, the integral over a single chart U is
Z
U

Dðx; gðcÞÞwðcÞdc;
where w(c) = w(g(c))/(g(c))J(c). In order to estimate the error of the trapezoidal rule, we need to estimate
oM

j ðDðx; gðcÞÞwðcÞÞ for j = 1,2. Since g is C1 and / is CM, all Mth order derivatives of w(c) are uniformly
bounded and it suffices to control o

M
j Dðx; gðcÞÞ. Furthermore, all Mth order derivatives of D(x,g(c)) with re-

spect to the chart parameterization, are bounded by a multiple of supremum of all Mth order derivatives of
D(x,y), with respect to y.

Since Dðx; yÞ ¼ 1
jrj2 SðrÞ for a C1 function S, we have the following estimate for any multiindex b with

|b| = M,
job
yDðx; yÞj 6 C

1

jrjMþ2
;

where r = x � y and the constant C is independent of r. Therefore, we have the following estimates for the
Mth derivatives of f(c):
joM
j Dðx; gðcÞÞwðcÞð Þj 6 C

1

jrjMþ2
6 C

1

hM=2þ1
ð33Þ
for j = 1,2. By (28), the error of using the trapezoidal rule to integrate f is bounded by
C sup
j;c
joM

j ðDðx; gðcÞÞwðcÞÞj
� �

hM ¼ OðhM
2�1Þ: �
Lemma C.2. For x 2 X1, the error of the algorithm is OðhM
2�2Þ if / is CM-continuous.

Proof. We apply the same estimate (33), except we use h instead of
ffiffiffi
h
p

, obtaining the error bound of order
O(h�M�2). Therefore, the error of using the trapezoidal rule on the refined grid with spacing h3/2 can be
bounded by
C sup
j;c
joM

j ðDðx; gðcÞÞwðcÞÞj
� �

h
3M
2 ¼ OðhM

2�2Þ: �
Lemma C.3. For x 2 X2, the error of the algorithm is OðhminðM2�2;LÞÞ if / is CM-continuous.



Proof. The limit velocity at x0, 1
2
/ðx0Þ þ D/ðx0Þ, has convergence rate OðhM

2�1Þ by Theorem A.3. From the
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